Object Classification in Still Images
نویسنده
چکیده
The goal of the Object Classification is to classify the objects in images. Classification aims for the recognition of generic classes, which is also known as Generic Object Recognition. This is quite different from Specific Object Recognition, such as recognizing specific person, own car, and etc. Human beings are generally better in recognizing generic classes than specific objects. Classification is a much harder problem to solve by artificial systems. Classification algorithm must be robust to changes in illumination, object scale, view point, and etc. The algorithm also has to manage large intra class variations and small inter class variations. In recent literature, some of the classification methods use Bag of Visual Words model. In this work the main emphasis is on region descriptor and representation of training images. Given a set of training images, interest points are detected through interest point detectors. Region around an interest point is described by a descriptor. Region covariance descriptor is adopted from porikli et al. [21], where they used this descriptor for object detection and classification. This region covariance descriptor is combined with Bag of Visual words model. We have used a different set of features for Classification task. Covariance of dfeatures, e.g. spatial location, Gaussian kernel with three different s values, first order Gaussian derivatives with two different s values, and second order Gaussian derivatives with four different s values, characterizes a region of interest. An image is also represented by Bag of Visual words obtained with both SIFT and Covariance descriptors. We worked on five datasets; Caltech-4, Caltech-3, Animal, Caltech-10, and Flower (17 classes) [25], with first four taken from Caltech-256 [24] and Caltech-101 [23] datasets. Many researchers used Caltech-4 dataset for object classification task. The region covariance descriptor is outperforming SIFT descriptor on both Caltech-4 and Caltech-3 datasets, whereas Combined representation (SIFT + Covariance) is outperforming both SIFT and Covariance
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملAnalysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River
Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کامل